

ISPS 2011 – 11th International Symposium on Performance Science,

Toronto, Canada, 24 – 27 August 2011

An accent-based approach to performance rendering: Music theory meets music psychology

Erica Bisesi, Richard Parncutt & Anders Friberg

Expressive piano performance

Music performance research involves

- music theory and analysis
- systematic musicology: acoustics, information sciences, psychology
- music performance studies in humanities and education

> Our aim:

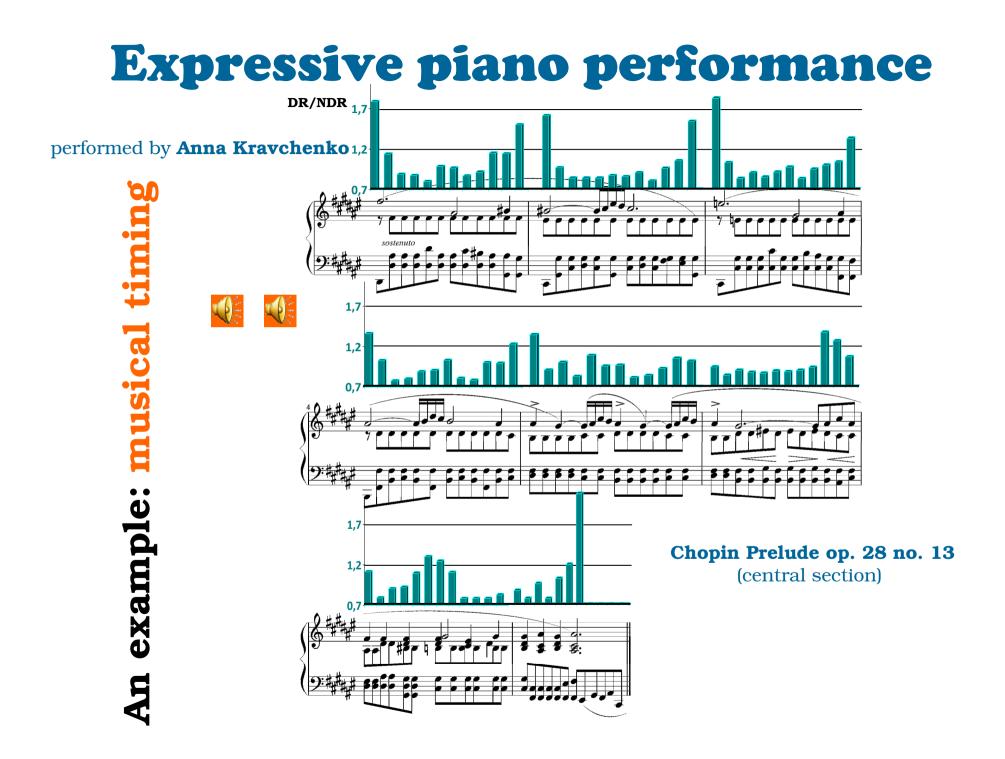
understand expressive timing and dynamics by

- measuring timing and dynamics in excellent performances
- developing theories about timing and dynamics
- implementing these theories in a computer algorithm
- generating and evaluating automatic performances

Expressive piano performance

- Analysis of timing and dynamics:
 - Bruno Repp, Eric Clarke, Caroline Palmer
- ➢ Kinematic models:
 - Neil Todd, Anders Friberg, Johan Sundberg
- Perceptual models:
 - Ed Large, Henkjan Honing, Caroline Drake
- Historical context:
 - Nicholas Cook

Expressive piano performance


performed by Anna Kravchenko

An example: musical timing

Chopin Prelude op. 28 no. 13 (central section)

24/08/2011

Our project

- Our aim is to explore the complex relationship between musical expression (as perceived by listeners and performers) and corresponding physical parameters (such as timing and dynamics).
- ➢ For that purpose, we have extended Director Musices (Friberg et al., 2006) in a new direction, incorporating the Parncutt's theory of accents (Parncutt, 2003) into the previous set of rules.
- Our approach is highly interdisciplinary, in the sense that we regard the sciences, humanities and musical practice as equally important.

What is an "accent"?

What accents do:

- attract attention of listener
- \succ give a feel for what is important
- > clarify structure
- facilitate musical communication

A broad definition (Parncutt, 2003):

- immanent (in the score):
 - ✓ metrical, grouping, melodic, harmonic
- performed (in the sound):
 - ✓ dynamic, durational, articulatory, timbral

What is an "accent"?

What accents do:

- attract attention of listener
- \succ give a feel for what is important
- clarify structure
- facilitate musical communication

broad def	ACCENTS	IMMANENT	PERFORMED
✓ metric	time	grouping metrical	agogic (onset time) articulatory (duration)
performe ✓ dynan	pitch	melodic harmonic	intonation
Uynan	loudness	dynamic	stress
	timbre	instrument orchestration	coloration

Table 1: Parncutt's (2003) taxonomy of musical accents.

24/08/2011

Music theory and analysis

An accent-based approach to music analysis

(Bisesi, E. & Parncutt, R. (2010). Poster presented at Kreativität, Struktur und Emotion - Kongress der Gesellschaft für Musiktheorie Hochschule für Musik, Würzburg, Germany, 7-10 October 2010)

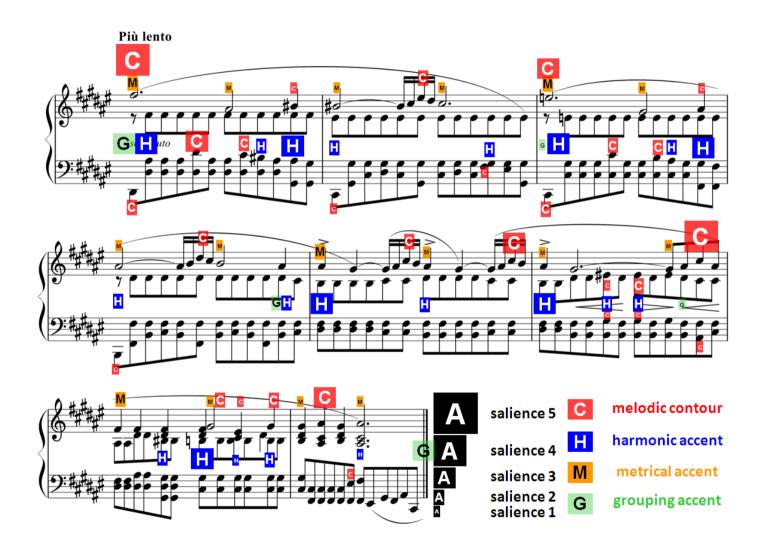
- **Q:** What do listeners perceive in the *structure* of a piece of music (i.e. not loudness, timbre, meaning)?
- **A:** Two aspects of relationships between structural elements:

a) **segmentation** (hierarchical)

b) **accents** (salient events)

- **Q:** How can we best describe that?
- **A:** Ask a group of expert listeners!

Musical theory and analysis


Our analysis produced

- SEGMENTATION
 - \checkmark start and end of phrases
 - \checkmark hierarchical level of phrasing
 - ✓ climax of each phrase and subphrase

> ACCENTS

- \checkmark accent position
- ✓ their kind (melodic, harmonic, metric, grouping)
- ✓ their salience
- \checkmark their range of action

Model for Accents

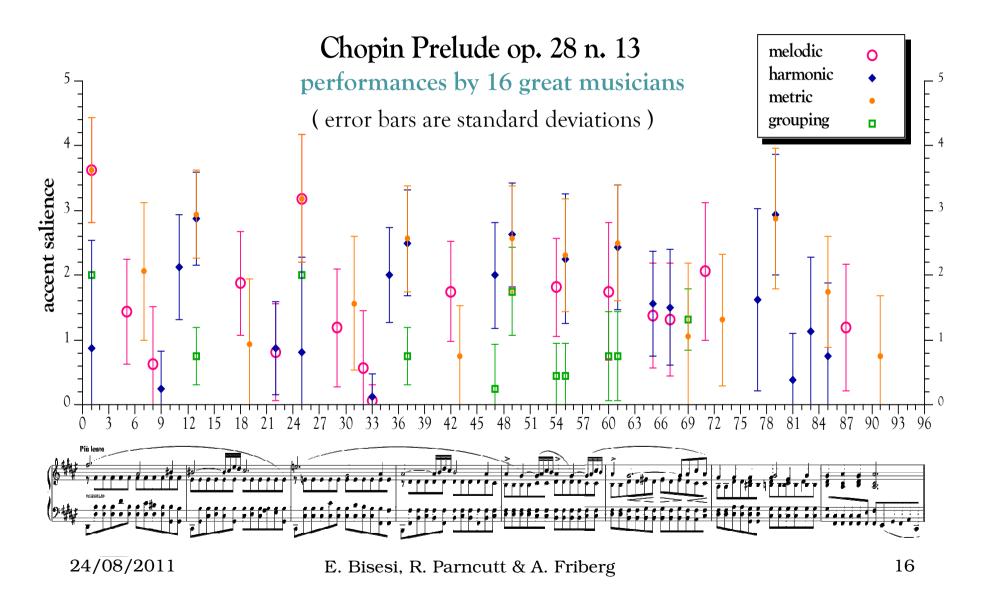
24/08/2011

Music performance

Expression in Romantic piano music

criteria for choice of score events for emphasis

(Bisesi & Parncutt (2011). Poster presented at SMPC 2011, Rochester, NY, USA, 11-24 August 2011)


- **Q:** In what aspects do great pianists agree when selecting score events (immanent accents) for local emphasis?
- **Q:** What are the features characterizing individual performers' styles or clusters of performances?
- **Q:** How do individual performers or groups of performers emphasize immanent accents by mean of performed accents?

Methodology

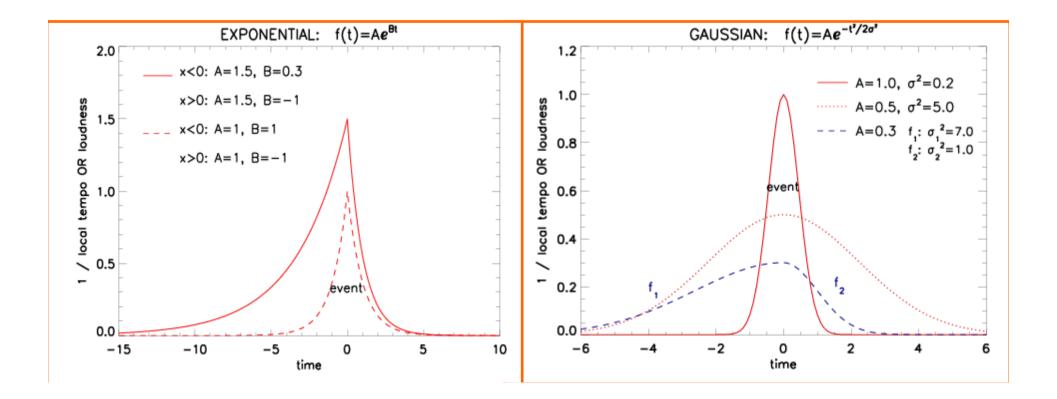
Material: 16 high-quality commercial recordings of Chopin Prelude op. 28 no. 13 (Argerich (1977), Arrau (1973), Ashkenazy (1978), Baremboim (1976), Biret (1992), Bolet (1974), Cortot (1942), François (1959), Kehrer (1992), Kissin (1999), Kravtchenko (2005), Lympany (1995), Magaloff (1975), Perahia (1975), Pogorelich (1989), and Pollini (1975)).

Procedure: We have independently listened to diverse commercially available recordings of Chopin Prelude op. 28 no. 13 (central section) and intuitively marked salient features of each pianist's performance. We are formulating intuitive individual principles for selecting and emphasizing score events.

Results (i)

Results (i)

performances by 16 great musicians


- > more emphasis on metric (M) and melodic (C) accents?
- > more agreement among pianists on melodic and metric accents?

accent	С	Η	Μ	G	total
total number of accents	15	20	16	12	63
% of pianists emphasizing the accent	82	71	86	64	76
% of accents emphasized by more than 68% of pianists	80	65	75	50	68

Mathematical modeling

Mathematical modeling

- tempo and dynamics fluctuate gradually or suddenly
- > model gradual fluctuations (e.g. *ritardando*) by curve fitting
- curves can be added together

Computer implementation

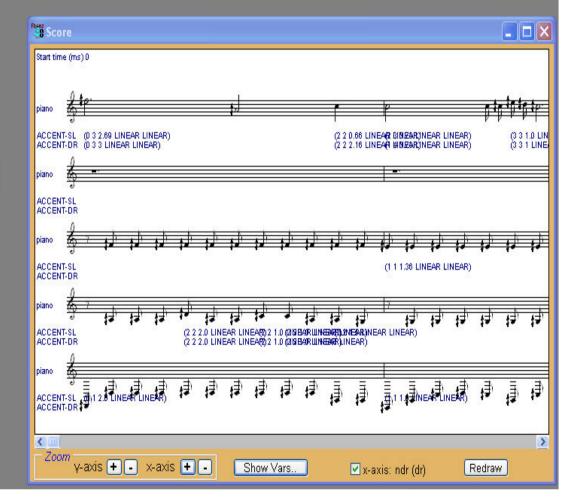
Computer implementation

Director Musices (DM) is a computer program that enables a musical score to be performed automatically. The result of a longterm research project at the KTH, Stockholm, it comprises performance rules that change specific note properties, including timing, duration, intensity, and frequency (Friberg, Bresin & Sundberg, 2006).

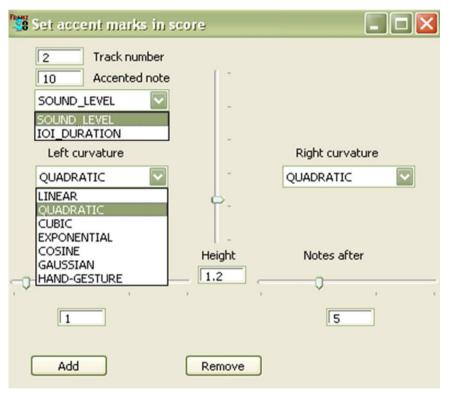
Input:musical score \rightarrow Output:"musical" performanceMethod:adjust timing, loudness, etc. by music-structural "rules"

➢ We have developed DM in a new direction, which allows us to relate expressive features of a performance not only to global or intermediate structural properties, but also accounting for local events (Bisesi & Parncutt, 2011, Bisesi et al., 2011).

Director Musices 2.7.1 compiled: 30/7/2011 20:10


File Edit Rules Display Play Tools Help

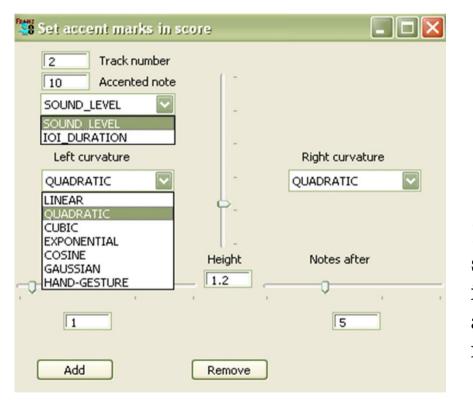
Type Act	Name	Instrument type	Ch	annel	Synth	BankMS	B BankL	SB Pro	gram	Volur	ne Pa	an R	everb	Dela	i -	
Mor Tr 🔽	piano	String 💊	1	v	SBlive	v	~	~	1 Acou Grand Piano	v ()		1	~	0	v
mono-Track 🛃	piano	String	1	v	SBlive	×	~	*	1 Acou Grand Piano	v ()	-	/	~	0	v
Mono-Track 🔽	piano	String	1	×	SBlive	*	*	*	1 Acou Grand Piano	v (/	*	0	*
Mono-Track 🔽	piano	String	1	~	SBlive	*	*	*	1 Acou Grand Piano	v () 💊		1	*	0	¥
Mono-Track 🔽	piano	String	1	~	SBlive	*	v	~	1 Acou Grand Piano	× () 🔻		/	v	0	v



Accents.pal	-942			
Play performed	-1.0	0 <	>	Leap-Tone-Duration
Play nominal	1.0	0 <	>	Accent-Main-S1
Init&Apply	1.0		>	Accent-Main-Dr
				Normalize-Sl
Apply				Normalize-Dr
Scale: 1.5	0.0	0 <	>	Final-Ritard
Save as				
log to file				
log to score				
🔿 No-Sync				
 Melodic-Sync 				
Simple-Mel-Syr				

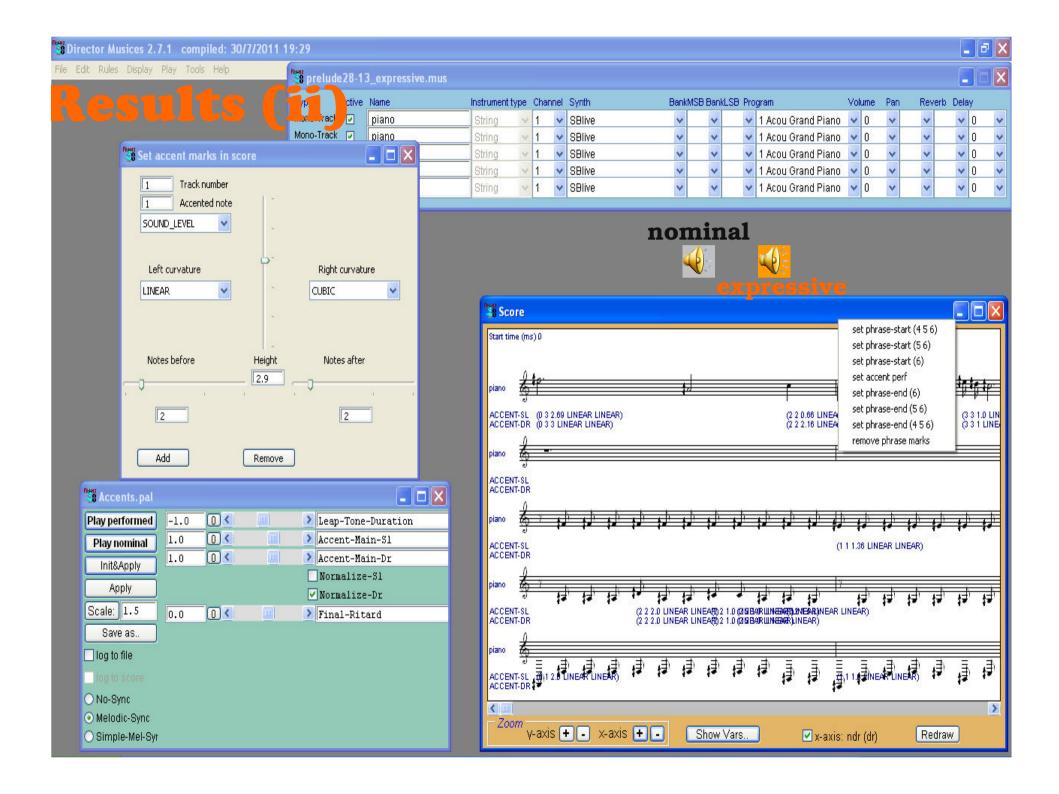
_ P ×

Results (ii)

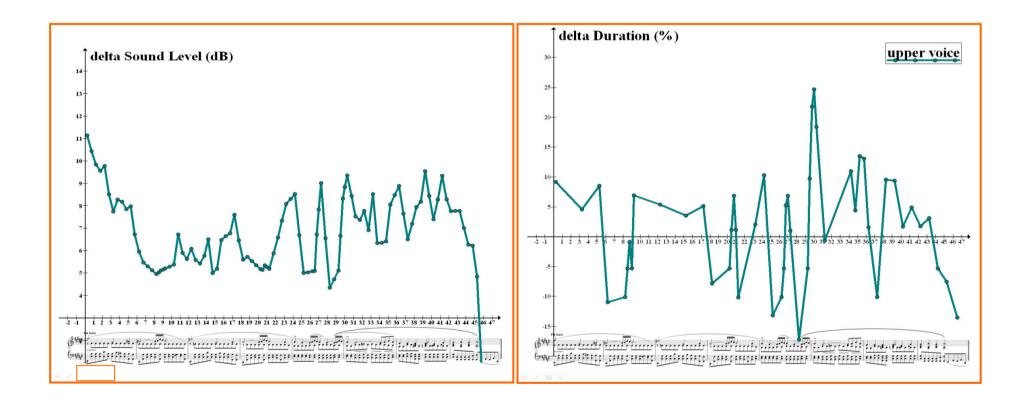


➤ The perceptual salience of the performed accent function depends on the area under a graph of beat duration or loudness against time.

➤ The greater the accent salience, the greater the height and/or width of the function.


➢ The curvature is not only connected with the perceptual salience, but also with the motion and emotional content.

Results (ii)



$$peak + \frac{W_1 + W_2}{2} = S + 1$$

Units for P, W1 and W2 are defined so that a value of 1 corresponds to an increment of 4 dB in the sound level and 20% timing deviations respectively.

Results (ii)

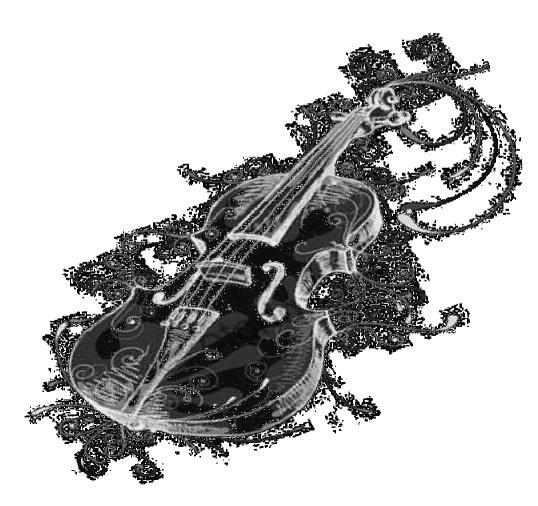
Conclusions

- The accent procedure can reproduce the patterns of timing and dynamics of the phrasing-based formulation (Bisesi & Parncutt, 2011). In an informal listening test, 10 out of 12 participants (5 of 6 musicians and 5 of 6 non-musicians) preferred the accent-based formulation, and several stated that it had more variation of timing and dynamics from one phrase to the next (Bisesi & Parncutt, 2011).
- Advantage of a bottom-up approach: different sub-phrases can be modeled independently from one another, which would make the model more parsimonious.
- ➢ Higher variability in the profiles of timing and dynamics can produce a wider spectrum of performances.

Future research

- > Enable the program to distinguish among different kinds of accents (melodic, harmonic, metric, grouping).
- Map the accents' salience into profiles of timing and dynamics (5x2 free parameters).
- Evaluate different renditions (by pianists, theorists and musicologists), and adjust model accordingly (by trial-and-error).
- Map out possible ranges of parameter values or fields in multidimensional parameter space that correspond to musically acceptable performances.
- Merge the previous approach (based on phrasing) with the new one (based on accents).
- Specify small parameter ranges that correspond to particular qualities of performance as expressed by words obtained from a separate qualitative study (such as bright and dark, joyful and sad, static and dynamic, expected and surprising).

24/08/2011


Implications

- ➤ The theory can be applied in expressive music performance pedagogy. Students can learn the theory by working with a computer interface to create renderings of pieces that they are currently studying.
- ➤ In the process they will select immanent accents for accentuation and adjust the corresponding model parameters to achieve a desired result. They will then be in a position to apply the ideas behind the model in their performance and teaching.

"Quelli che s'innamoran di pratica sanza scienzia son come 'l nocchier ch'entra in navilio senza timone o bussola, che mai ha certezza dove si vada"

Leonardo da Vinci

"Wir können überhaupt nicht denken, ohne unsere fünf Sinne zu gebrauchen"

Albert Einstein