UNI A1A1PC2010-9 ${ }^{\text {th }}$ Afos-Adria Psychology Conference KXagenfurt, 16-18 September 2010

TTTTT T T T TTTT

$$
\begin{gathered}
\text { CANV IHEE TEMPO } \\
\mathcal{B E} \\
\text { EXACILY DOUBLED ? }
\end{gathered}
$$

Erica Bisesi, Irene Gratton \& G. Bruno Vicario

Aims

Research questions:

$>$ Does an optimal tempo exist in music?
$>$ Does an unambiguous representation of slow and fast tempo exist, with respect to a given tempo?
$>$ Can the musical tempo be exactly reproduced?
$>$ Can the musical tempo be exactly doubled?
Which factors (cognitive, motor) the task depend on?

Methods

Participants:

16 trained pianists from Trieste Conservatory

Materials:

1) first 4 bars of Bach Prelude BWV 846
2) 6 audio files at 6 different tempi

scale of tempi with fixed frequency ratio (in analogy with the well temperated scale of frequencies): $40.00,47.57,56.57,67.27,80.00,95.14$

Example: 56.57 bpm

Methods

Procedure:

2 experimental conditions:

1) participants performed at 3 different tempi: "tempo correct", fast and slow; participants were divided in two groups: 8 Correct-Fast-Slow (CFS) and 8 Correct-Slow-Fast (CSF)
participants listened to their "tempo correct" performance and reproduced at the same tempo
participants listened to their "tempo correct" performance and reproduced at the double tempo

Methods

Procedure:

2 experimental conditions:

2) participants listened to audio files at 3 different metronomic tempi (random sequence of 3 stimuli selected among the 6 audio files) and reproduced at the same tempi
participants listened to audio files at 6 different metronomic tempi (random sequence different than the previous one) and reproduced at the double tempi

Data Analysis

\checkmark Choice of the optimal tempo
\checkmark Slowing down and speeding up
Memory for musical tempo
Reproducing a given tempo
\checkmark Doubling a given tempo

Optimal tempo:

Refs:

Our results:

Bisesi \& Vicario, 2010
McKinney \& Moelants, 2004
Moelants, 2002

$$
\begin{aligned}
& \mathrm{T}_{\operatorname{mean}}=64 \mathrm{bpm} \\
& \mathrm{~T}_{\min }=50 \mathrm{bpm} \\
& \mathrm{~T}_{\max }=77 \mathrm{bpm} \\
& \sigma_{\mathrm{t}}=7.04 \mathrm{bpm}
\end{aligned}
$$

Memory for musical tempo:

Refs:
Gratton \& Bruno, in progress
Levitin \& Cook, 1996

Experimental conditions:

(a) 8 subjects: target >> faster >> slower [t, F1(=t*), S1]
(b) 8 subjects: target \gg slower \gg faster [t, S2(=t*), F2]

Results:

The difference between faster and first target is not significatively different within the two experimental conditions

F1 - t vs. F2-t:
$\mathrm{t}=-1.12, \mathrm{df}=7, \mathrm{p}=0.3$

The difference between faster and last target is significatively different within the two experimental conditions

F1 - t vs. F2-t*(S2):
$\mathrm{t}=\mathbf{- 5 . 8 5}, \mathrm{df}=7, \mathrm{p}=0.00063$

Results:

The difference between slower and first target is not significatively different within the two experimental conditions

$$
\begin{aligned}
& \mathrm{S} 1-\mathrm{t} \text { vs. } \mathrm{S} 2-\mathrm{t}: \\
& \mathrm{t}=0.17, \mathrm{df}=7, \mathrm{p}=0.87
\end{aligned}
$$

The difference between slower and last target is significatively different within the two experimental conditions

$$
\begin{aligned}
& S 1-t \text { vs. } S 2-t^{*}(F 2): \\
& t=5.0005, d f=7, p=0.0016
\end{aligned}
$$

Memory for musical tempo

Results:

The difference between slower and first target is not significatively different within the two experimental conditions

$$
\begin{aligned}
& \mathrm{S} 1-\mathrm{t} \text { vs. } \mathrm{S} 2-\mathrm{t}: \\
& \mathrm{t}=0.17, \mathrm{df}=7, \mathrm{p}=0.87
\end{aligned}
$$

The difference between slower and last target is significatively different within the two experimental conditions

$$
\begin{aligned}
& S 1-t \text { vs. } S 2-t^{*}(F 2): \\
& t=5.0005, d f=7, p=0.0016
\end{aligned}
$$

Slowing down and speeding up:

Refs:
Krumhansl, 2000
Povel, 1981
Fraisse, 1982
Flach et al., 2004

Results:

Speeding up: 20.64 \%

Min. 1st Qu. Median Mean 3rd Qu. Max. St.Dev. $\begin{array}{lllllll}58.96 & 70.31 & 75.23 & 76.26 & 81.35 & 99.68 & 10.92\end{array}$

Slowing down: 18.36\%
Min. 1st Qu. Median Mean 3rd Qu. Max. St.Dev. $\begin{array}{llllllll}37.38 & 49.14 & 53.70 & 54.08 & 60.83 & 66.49 & 8.24\end{array}$

Results:

Faster: 20.64\%

Slower: 18.36\%
Double: 54.8 \%

Reproduction of a given tempo

Exp 1:

spontaneous reproduction of musical tempi is homogeneous along the whole scale of speeds

Reproduction of a given tempo

Exp 1:

reproduction at a double tempo is (less) homogeneous along the whole scale of speeds

Reproduction of a given tempo

Exp 1:

ranronlintinn st
double tempo corresponds to a constant shift
scaie ot speeds

Spontaneous vs. selected tempi;

Refs:
Shea et al., 2001
Schmidt, 1975

No task effect

(1) spontaneous:
$\mathrm{t}=-1.41, \mathrm{df}=15, \mathrm{p}=0.18$
(2) double:
$\mathrm{t}=-1.17, \mathrm{df}=15, \mathrm{p}=0.26$
Only 1 subject found difficulties in task (1)

General Linear Models:

Exp 1:

Effect	f	F	p
REPRODUCED		1	34.03
ID VEL		2	0.98

There is no constant modulation

| Effect | f | F | p |
| :--- | ---: | ---: | ---: | ---: |
| SPONTANEOUS | 1 | 166.9 | 0 |
| TASK | 1 | 5.7 | 0.02 |
| TASK * SPONTANEOUS | 1 | 2.4 | 0.13 |

There is an effect of SPONTANEOUS and TASK: subjects modulate according with spontaneous tempo

General Linear Models:

Exp 1:

Lines are parallel:

there is no interaction ($\mathrm{p}=.131$ in previous table)

Spontantaneous or doubled reproduction have the same behavior: once the slope due to spontaneous reproduction is left out, there is no task effect (reproduced, double)

General Linear Models:

Exp 2:

Effect	f	F	p
VEL	1	269.3	0
TASK	1	12.3	0.025
TASK * VEL	1	1.7	0.26
REP	7	0.7	0.70
REP * VEL	7	0.8	0.56
TASK *REP	7	0.8	0.63
TASK *REP * VEL	7	1.2	0.35

Task and velocity are both significative

double tempo $=$
spontaneous tempo
a constant value

Conclusion

- Results support the conclusion of the existence of an "optimum" tempo
- Slow and fast are absolute concepts
- Participants exibit a memory for musical tempo
- Spontaneous reproduction of musical tempi is
homogeneous along the whole scale of speeds Double tempo corresponds to a constant shift

Improvements

- Confirm results with another experimental method (for instance, choice)
- Search for a correspondence inside other perceptual domains (visual, motor)
- Search for correlation with cognitive or motor competence

