

What emotions and free associations characterize different musical styles?

Florian Eckl, Erica Bisesi & Richard Parncutt ICME3 2013 Jyväskylä, Finland, 11-15 June 2013

An accent-based approach to musíc analysís

Q: What do listeners perceive in the *structure* of a piece of music (i.e. not timbre, meaning)?

A: Two aspects of relationships between structural elements:
a) segmentation (hierarchical)
b) accents (salient events)

Our analysis produces :

SEGMENTATION
 start and end of phrases
 hierarchical level of phrasing
 climax of each phrase and sub-phrase

> ACCENTS

- \checkmark accent position
- ✓ their kind (grouping, metrical, dynamical, melodic, harmonic)
- ✓ their salience
- ✓ their range of action

What is an "accent"?

What accents do :

- attract attention of listener
- give a feel for what is important
- clarify structure
- facilitate musical communication

A broad definition

- immanent (in the score):
 - ✓ grouping, metrical, melodic, harmonic
 - performed (in the sound):
 - ✓ dynamic, durational, articulatory, timbral

What is an "accent"?

What accents do :

- attract attention of listener
- give a feel for what is important
- clarify structure
- facilitate musical communication

ACCENTS	IMMANENT	PERFORMED
time	grouping	agogic (onset time)
	metrical	articulatory (duration)
pitch	melodic	intonation
	harmonic	
loudness	dynamic	stress
timbre	instrument orchestration	coloration

Table 1: Parncutt's (2003) taxonomy of musical accents.

Chopin - Prelude op. 28 no. 7

A computer model of immanent accent <mark>salience in tonal music</mark> Þarncutt, Bísesí & Fríberg (2013)

Director Musices (DM) is a computer program that enables a musical score to be performed automatically. The result of a long-term research project at the KTH, Stockholm, it comprises performance rules that change specific note properties, including timing, duration, intensity, and frequency (Friberg, Bresin & Sundberg, 2006).

Input: musical score \rightarrow Output: "musical" performance Method: adjust timing, loudness, etc. by music-structural "rules"

not only global or intermediate structural properties, but also local events analysis-by-synthesis method

automatic analysis of the score and application of rules

focus on different historical periods and stylistic conventions

a toolbox in which the performer decide which tool to use depending on the musical intention, style, personal preferences

Metrical accents:

> each pulse or metrical level is marked on the score

the function of pulse salience against period is a Gaussian function relative to a logarithmic scale of period (*Parncutt*, 1994)

$$Salience_i = e^{-0.5*\left(\frac{\log X - \log M}{\log S}\right)^2}$$

the metrical accent salience of each point in time in the score is the sum of the salience of all metrical levels including that note

Metrical accents:

> each pulse or metrical level is marked on the score

➤ the fu function 1994)

	Metrical level				
Time signature	Level 0	Level 1 (beat)	Level 2	Level 3	
4/4	1/8	1/4	2/4	4/4	
2/2	1/4	1/2	2/2	4/2	
4/2	1/4	1/2	2/2	4/2	
2/4	1/8	1/4	2/4	4/4	
3/4	1/8	1/4	3/4	6/4	
3/8	1/16	1/8	3/8	6/8	
6/8	1/8	3/8	6/8	12/8	
9/8	1/8	3/8	9/8	18/8	

a Gaussian od *(Parncutt,*

the me is the note **Table 1.** The period of each metrical level expressed as note values for different time signatures.

in the score cluding that

Melodic contour accents:

- the salience of the accent is due to a combination of two factors: the size of the leap preceding the accent, and the distance of the accent from the centre of the melody's range or ambitus
- \triangleright the mean pitch is calculated for each track individually:
 - \triangleright each tone is assigned a salience S_1 for the pitch deviation from the mean
 - \triangleright each tone is assigned a salience S_2 is according to the size of the preceding interval
 - \blacktriangleright the final value for melodic salience = $(S_1 + S_2) / 15$

Harmonic accents:

- ➤ a functional harmonic analysis is manually provided in the score (Friberg, 1991)
- the salience of a harmonic accent is computed at each chord change

Salience =
$$1.5 * \sqrt{Harmonic Ch} \arg e$$

Image: A state of the state

Eckl, Bisesi & Parncutt (2013)

Our project

Aim. We are searching for a relationship between structural parameters involved in our new model for musical expression (based on accents), and emotions and free associations.

Research Questions:

- 1. How do musically acceptable performances fit with possible ranges of parameter values?
- 2. Which parameter ranges correspond to particular qualities of performance such as emotions and free associations?
- 3. How do all these findings depend on stylistic context?

Our project

Participants. 14 participants (7 musicians and 7 non-musicians)
Stimuli.

• 3 piano pieces in different "classical" styles and with different structure (meter, modality)

Stimuli.

Table 1. Stimuli provided to participants in tasks 1, 2, and 3. Acronyms' explanation: "1": Bach; "2": Haydn; "3": Mendelssohn; "N": nominal (or deadpan) performance; "M": expressive performance based on metrical accents; "CH": expressive performance based on melodic and harmonic accents; "T": local deviations in the tempo; "D": local deviations in the dynamics; "W1": steep curve profile; "W2": smooth curve profile.

TASK 1, TASK 3		TASK 2		
#	performance	#	performance	
1	1N			
2	1MTW1	1	1N – 1MTW1	
3	1MTW2	2	1N – 1MTW2	
4	1MDW1	3	1N – 1MDW1	
5	1MDW2	4	1N – 1MDW2	
6	1CHTW1	5	1N-1CHTW1	
7	1CHTW2	6	1N-1CHTW2	
8	1CHDW1	7	1N-1CHDW1	
9	1CHDW2	8	1N – 1CHDW2	
10	2N			
11	2MTW1	9	2N – 2MTW1	
12	2MTW2	10	2N – 2MTW2	
13	2MDW1	11	2N – 2MDW1	
14	2MDW2	12	2N – 2MDW2	
15	2CHTW1	13	2N – 2CHTW1	
16	2CHTW2	14	2N – 2CHTW2	
17	2CHDW1	15	2N – 2CHDW1	
18	2CHDW2	16	2N – 2CHDW2	
19	3N			
20	3MTW1	17	3N – 3MTW1	
21	3MTW2	18	3N – 3MTW2	
22	3MDW1	19	3N-3MDW1	
23	3MDW2	20	3N - 3MDW 2	
24	3CHTW1	21	3N-3CHTW1	
25	3CHTW2	22	3N-3CHTW2	
26	3CHDW1	23	3N-3CHDW1	
27	3CHDW2	24	3N – 3CHDW2	

16

Procedure.

Stage 1:

Aim: quantify the musical acceptability of the pieces

Method: rate on a scale from 1 (not at all) to 10 (a lot)

Stage 2

Aim: quantify the degree of expressivity of different renditions as compared with deadpan performances

Method: rate on a scale from 1 (small) to 10 (big)

Procedure.

Stage 3

Aim: describe automatic performance renditions from the viewpoint of the listeners (feelings, images, or other descriptions)

- Stage 1 and 3: each of the 27 performances was provided to participants separately
- Stage 2: each stimulus consisted of a combination of a deadpan performance and an expressive performance
- In all stages, stimuli were presented in a random order

task 1: goodness of stimuli

task 1: goodne

task 2: level of expressivity

10 10 F(1;118) = 29.44; p = 0.0000003 F(2;117) = 3.54; p = 0.039 ٥ 8 8 7 rating rating 6 6 5 5 Λ 3 3 2 2 СН BACH HAYDN MENDELSSOHN Μ piece accent 10 10 F(1;118) = 7.02; p = 0.009 F(1;118) = 7.52; p = 0.007 9 9 8 7 rating rating 6 5 5 3 2 2 STEEP SMOOTH TIMING DYNAMICS expressive variation curve profile

task 2: level o

Eckl, Bisesi & Parncutt (2013)

Baroque- and classical-style performances are preferred with respect to romantic-style performances

Expressive variations in the dynamics are preferred

Baroque- and classical-style performances were rated as more different from deadpan performances than romantic performances

Ratings were higher when differences were due to changes in the dynamics than in the timing

• Emphasis on melodic and harmonic accents modeled by mean of steep curve profiles were perceived as more different from deadpan performances than renditions based on metrical accents and/or smooth curve profiles

Second stage of the experiment: to relate parameters' pre-sets to specific words describing emotions and free associations

Results will be used to develop new gestural interfaces in pDM - a *pure data* system for real-time expressive control of music performance

