CAN THE TEMPO BE EXACTLY DOUBLED?

Erica Bisesi, Irene Gratton & G. Bruno Vicario
Aims

Research questions:

- Does an optimal tempo exist in music?
- Does an unambiguous representation of slow and fast tempo exist, with respect to a given tempo?
- Can the musical tempo be exactly reproduced?
- Can the musical tempo be exactly doubled?
- Which factors (cognitive, motor) the task depend on?
Methods

Participants:
16 trained pianists from Trieste Conservatory

Materials:
1) first 4 bars of Bach Prelude BWV 846

2) 6 audio files at 6 different tempi

scale of tempi with fixed frequency ratio (in analogy with the well tempered scale of frequencies): 40.00, 47.57, 56.57, 67.27, 80.00, 95.14

Example: 56.57 bpm
Methods

Procedure:

2 experimental conditions:

1) participants performed at 3 different tempi: “tempo correct”, fast and slow; participants were divided in two groups: 8 Correct—Fast—Slow (CFS) and 8 Correct—Slow—Fast (CSF)

participants listened to their “tempo correct” performance and reproduced at the same tempo

participants listened to their “tempo correct” performance and reproduced at the double tempo
Methods

Procedure:

2 experimental conditions:

2) participants listened to audio files at 3 different metronomic tempi (random sequence of 3 stimuli selected among the 6 audio files) and reproduced at the same tempi

participants listened to audio files at 6 different metronomic tempi (random sequence different than the previous one) and reproduced at the double tempi
Data Analysis

✓ Choice of the optimal tempo
✓ Slowing down and speeding up
✓ Memory for musical tempo
✓ Reproducing a given tempo
✓ Doubling a given tempo
Optimal tempo:

Refs:
Bisesi & Vicario, 2010
McKinney & Moelants, 2004
Moelants, 2002

Our results:

$T_{\text{mean}} = 64 \text{ bpm}$
$T_{\text{min}} = 50 \text{ bpm}$
$T_{\text{max}} = 77 \text{ bpm}$

$\sigma_t = 7.04 \text{ bpm}$
Memory for musical tempo:

Refs:
Gratton & Bruno, in progress
Levitin & Cook, 1996

Experimental conditions:

(a) 8 subjects: target >> faster >> slower
 [t, F1(=t*), S1]

(b) 8 subjects: target >> slower >> faster
 [t, S2(=t*), F2]
Results:
The difference between faster and first target is **not** significatively different within the two experimental conditions

\[F1 \text{ — } t \text{ vs. } F2 \text{ — } t: \]
\[t = -1.12, \text{ df } = 7, \text{ } p = 0.3 \]

The difference between faster and last target **is** significatively different within the two experimental conditions

\[F1 \text{ — } t \text{ vs. } F2 \text{ — } t*(S2): \]
\[t = -5.85, \text{ df } = 7, \text{ } p = 0.00063 \]
Results:
The difference between slower and first target is not significantly different within the two experimental conditions

S1 — t vs. S2 — t:
t = 0.17, df = 7, \(p = 0.87 \)

The difference between slower and last target is significantly different within the two experimental conditions

S1 — t vs. S2 — t*(F2):
t = 5.0005, df = 7, \(p = 0.0016 \)

Memory for musical tempo
Results:

The difference between slower and first target is **not** significantly different within the two experimental conditions.

\[S_1 - t \text{ vs. } S_2 - t: \]
\[t = 0.17, df = 7, p = 0.87 \]

The difference between slower and last target is **significantly** different within the two experimental conditions.

\[S_1 - t \text{ vs. } S_2 - t*: F(2): \]
\[t = 5.0005, df = 7, p = 0.0016 \]

Slow and fast are absolute concepts
Slowing down and speeding up:

Refs:
Krumhansl, 2000
Povel, 1981
Fraisse, 1982
Flach et al., 2004

Results:

Speeding up: 20.64%

<table>
<thead>
<tr>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
<th>3rd Qu.</th>
<th>Max.</th>
<th>St.Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>58.96</td>
<td>70.31</td>
<td>75.23</td>
<td>76.26</td>
<td>81.35</td>
<td>99.68</td>
<td>10.92</td>
</tr>
</tbody>
</table>

Slowing down: 18.36%

<table>
<thead>
<tr>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
<th>3rd Qu.</th>
<th>Max.</th>
<th>St.Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.38</td>
<td>49.14</td>
<td>53.70</td>
<td>54.08</td>
<td>60.83</td>
<td>66.49</td>
<td>8.24</td>
</tr>
</tbody>
</table>
Results:

Faster: 20.64%
Slower: 18.36%
Double: 54.8%
Reproduction of a given tempo

Exp 1:

spontaneous reproduction of musical tempi is homogeneous along the whole scale of speeds
Reproduction of a given tempo

Exp 1:

reproduction at a double tempo is (less) homogeneous along the whole scale of speeds
Reproduction of a given tempo

Exp 1:

Reproduction at a double tempo is less homogeneous along the whole scale of speeds 30 40 50 60 70 80 90 100 110.

SPONTANEOUS - DOUBLE: \(r = 0.73; p = 0.000000004; \)
\[y = 30.3 + 1.19 \times x \]

Reproduction at double tempo corresponds to a constant shift scale of speeds.
Spontaneous vs. selected tempi:

Refs:
Shea et al., 2001
Schmidt, 1975

No task effect

(1) spontaneous:
\[t = -1.41, \, df = 15, \, p = 0.18 \]

(2) double:
\[t = -1.17, \, df = 15, \, p = 0.26 \]

Only 1 subject found difficulties in task (1)
General Linear Models:

Exp 1:

<table>
<thead>
<tr>
<th>Effect</th>
<th>f</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPRODUCED</td>
<td>1</td>
<td>34.03</td>
<td>0</td>
</tr>
<tr>
<td>ID VEL</td>
<td>2</td>
<td>0.98</td>
<td>0.38</td>
</tr>
</tbody>
</table>

There is no constant modulation

<table>
<thead>
<tr>
<th>Effect</th>
<th>f</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPONTANEOUS</td>
<td>1</td>
<td>166.9</td>
<td>0</td>
</tr>
<tr>
<td>TASK</td>
<td>1</td>
<td>5.7</td>
<td>0.02</td>
</tr>
<tr>
<td>TASK * SPONTANEOUS</td>
<td>1</td>
<td>2.4</td>
<td>0.13</td>
</tr>
</tbody>
</table>

There is an effect of SPONTANEOUS and TASK: subjects modulate according with spontaneous tempo
General Linear Models:

Exp 1:

Lines are parallel: there is no interaction ($p=.131$ in previous table)

Spontaneous or doubled reproduction have the same behavior: once the slope due to spontaneous reproduction is left out, there is no task effect (reproduced, double)
General Linear Models:

Exp 2:

<table>
<thead>
<tr>
<th>Effect</th>
<th>f</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEL</td>
<td>1</td>
<td>269.3</td>
<td>0</td>
</tr>
<tr>
<td>TASK</td>
<td>1</td>
<td>12.3</td>
<td>0.025</td>
</tr>
<tr>
<td>TASK * VEL</td>
<td>1</td>
<td>1.7</td>
<td>0.26</td>
</tr>
<tr>
<td>REP</td>
<td>7</td>
<td>0.7</td>
<td>0.70</td>
</tr>
<tr>
<td>REP * VEL</td>
<td>7</td>
<td>0.8</td>
<td>0.56</td>
</tr>
<tr>
<td>TASK * REP</td>
<td>7</td>
<td>0.8</td>
<td>0.63</td>
</tr>
<tr>
<td>TASK * REP * VEL</td>
<td>7</td>
<td>1.2</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Task and velocity are both significative

double tempo
 =
spontaneous tempo
 +
a constant value
Conclusion

• Results support the conclusion of the existence of an “optimum” tempo
• Slow and fast are absolute concepts
• Participants exhibit a memory for musical tempo
• Spontaneous reproduction of musical tempi is homogeneous along the whole scale of speeds
• Double tempo corresponds to a constant shift
Improvements

• Confirm results with another experimental method (for instance, choice)
• Search for a correspondence inside other perceptual domains (visual, motor)
• Search for correlation with cognitive or motor competence
“It is not that we have so little time, but that we lose so much”

Seneca

“Music is the best means we have of digesting time”

W. H. Auden